Mister Exam

Other calculators


x^4=(x-56)^2

x^4=(x-56)^2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4           2
x  = (x - 56) 
$$x^{4} = \left(x - 56\right)^{2}$$
Detail solution
Given the equation:
$$x^{4} = \left(x - 56\right)^{2}$$
transform:
Take common factor from the equation
$$\left(x - 7\right) \left(x + 8\right) \left(x^{2} - x + 56\right) = 0$$
Because the right side of the equation is zero, then the solution of the equation is exists if at least one of the multipliers in the left side of the equation equal to zero.
We get the equations
$$x - 7 = 0$$
$$x + 8 = 0$$
$$x^{2} - x + 56 = 0$$
solve the resulting equation:
1.
$$x - 7 = 0$$
Move free summands (without x)
from left part to right part, we given:
$$x = 7$$
We get the answer: x1 = 7
2.
$$x + 8 = 0$$
Move free summands (without x)
from left part to right part, we given:
$$x = -8$$
We get the answer: x2 = -8
3.
$$x^{2} - x + 56 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{3} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{4} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -1$$
$$c = 56$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (1) * (56) = -223

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x3 = (-b + sqrt(D)) / (2*a)

x4 = (-b - sqrt(D)) / (2*a)

or
$$x_{3} = \frac{1}{2} + \frac{\sqrt{223} i}{2}$$
$$x_{4} = \frac{1}{2} - \frac{\sqrt{223} i}{2}$$
The final answer:
$$x_{1} = 7$$
$$x_{2} = -8$$
$$x_{3} = \frac{1}{2} + \frac{\sqrt{223} i}{2}$$
$$x_{4} = \frac{1}{2} - \frac{\sqrt{223} i}{2}$$
The graph
Sum and product of roots [src]
sum
                 _____           _____
         1   I*\/ 223    1   I*\/ 223 
-8 + 7 + - - --------- + - + ---------
         2       2       2       2    
$$\left(\left(-8 + 7\right) + \left(\frac{1}{2} - \frac{\sqrt{223} i}{2}\right)\right) + \left(\frac{1}{2} + \frac{\sqrt{223} i}{2}\right)$$
=
0
$$0$$
product
     /        _____\ /        _____\
     |1   I*\/ 223 | |1   I*\/ 223 |
-8*7*|- - ---------|*|- + ---------|
     \2       2    / \2       2    /
$$- 56 \left(\frac{1}{2} - \frac{\sqrt{223} i}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{223} i}{2}\right)$$
=
-3136
$$-3136$$
-3136
Rapid solution [src]
x1 = -8
$$x_{1} = -8$$
x2 = 7
$$x_{2} = 7$$
             _____
     1   I*\/ 223 
x3 = - - ---------
     2       2    
$$x_{3} = \frac{1}{2} - \frac{\sqrt{223} i}{2}$$
             _____
     1   I*\/ 223 
x4 = - + ---------
     2       2    
$$x_{4} = \frac{1}{2} + \frac{\sqrt{223} i}{2}$$
x4 = 1/2 + sqrt(223)*i/2
Numerical answer [src]
x1 = 0.5 - 7.46659226153404*i
x2 = 0.5 + 7.46659226153404*i
x3 = 7.0
x4 = -8.0
x4 = -8.0
The graph
x^4=(x-56)^2 equation