Mister Exam

x+y-1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x + y - 1 = 0
$$\left(x + y\right) - 1 = 0$$
Detail solution
Given the linear equation:
x+y-1 = 0

Looking for similar summands in the left part:
-1 + x + y = 0

Move free summands (without x)
from left part to right part, we given:
$$x + y = 1$$
Move the summands with the other variables
from left part to right part, we given:
$$x = 1 - y$$
We get the answer: x = 1 - y
The graph
Rapid solution [src]
x1 = 1 - re(y) - I*im(y)
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
x1 = -re(y) - i*im(y) + 1
Sum and product of roots [src]
sum
1 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
=
1 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
product
1 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
=
1 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
1 - re(y) - i*im(y)