x+y-1=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x+y-1 = 0
Looking for similar summands in the left part:
-1 + x + y = 0
Move free summands (without x)
from left part to right part, we given:
$$x + y = 1$$
Move the summands with the other variables
from left part to right part, we given:
$$x = 1 - y$$
We get the answer: x = 1 - y
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
x1 = -re(y) - i*im(y) + 1
Sum and product of roots
[src]
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 1$$