Mister Exam

Other calculators

x-y-1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x - y - 1 = 0
$$\left(x - y\right) - 1 = 0$$
Detail solution
Given the linear equation:
x-y-1 = 0

Looking for similar summands in the left part:
-1 + x - y = 0

Move free summands (without x)
from left part to right part, we given:
$$x - y = 1$$
Move the summands with the other variables
from left part to right part, we given:
$$x = y + 1$$
We get the answer: x = 1 + y
The graph
Sum and product of roots [src]
sum
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
=
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
product
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
=
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
1 + i*im(y) + re(y)
Rapid solution [src]
x1 = 1 + I*im(y) + re(y)
$$x_{1} = \operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
x1 = re(y) + i*im(y) + 1