Mister Exam

Other calculators


(x+10)(-x-8)=0

(x+10)(-x-8)=0 equação

O professor ficará muito surpreso ao ver a sua resposta correta 😉

v

Numerical solution:

Do search numerical solution at [, ]

A solução

You have entered [src]
(x + 10)*(-x - 8) = 0
(x8)(x+10)=0\left(- x - 8\right) \left(x + 10\right) = 0
Detail solution
Expand the expression in the equation
(x8)(x+10)=0\left(- x - 8\right) \left(x + 10\right) = 0
We get the quadratic equation
x218x80=0- x^{2} - 18 x - 80 = 0
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = -1
b=18b = -18
c=80c = -80
, then
D = b^2 - 4 * a * c = 

(-18)^2 - 4 * (-1) * (-80) = 4

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=10x_{1} = -10
x2=8x_{2} = -8
The graph
0-30-25-20-15-10-5-200100
Sum and product of roots [src]
sum
-10 - 8
108-10 - 8
=
-18
18-18
product
-10*(-8)
80- -80
=
80
8080
80
Rapid solution [src]
x1 = -10
x1=10x_{1} = -10
x2 = -8
x2=8x_{2} = -8
x2 = -8
Numerical answer [src]
x1 = -10.0
x2 = -8.0
x2 = -8.0
Gráfico
(x+10)(-x-8)=0 equação