x-y+1=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x-y+1 = 0
Looking for similar summands in the left part:
1 + x - y = 0
Move free summands (without x)
from left part to right part, we given:
$$x - y = -1$$
Move the summands with the other variables
from left part to right part, we given:
$$x = y - 1$$
We get the answer: x = -1 + y
Sum and product of roots
[src]
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} - 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} - 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} - 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} - 1$$
x1 = -1 + I*im(y) + re(y)
$$x_{1} = \operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} - 1$$