Mister Exam

Other calculators


2x^4-3x^2=0

2x^4-3x^2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   4      2    
2*x  - 3*x  = 0
$$2 x^{4} - 3 x^{2} = 0$$
Detail solution
Given the equation:
$$2 x^{4} - 3 x^{2} = 0$$
Do replacement
$$v = x^{2}$$
then the equation will be the:
$$2 v^{2} - 3 v = 0$$
This equation is of the form
$$a\ v^2 + b\ v + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 2$$
$$b = -3$$
$$c = 0$$
, then
$$D = b^2 - 4\ a\ c = $$
$$\left(-1\right) 2 \cdot 4 \cdot 0 + \left(-3\right)^{2} = 9$$
Because D > 0, then the equation has two roots.
$$v_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$v_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$v_{1} = \frac{3}{2}$$
Simplify
$$v_{2} = 0$$
Simplify
The final answer:
Because
$$v = x^{2}$$
then
$$x_{1} = \sqrt{v_{1}}$$
$$x_{2} = - \sqrt{v_{1}}$$
$$x_{3} = \sqrt{v_{2}}$$
$$x_{4} = - \sqrt{v_{2}}$$
then:
$$x_{1} = \frac{0}{1} + \frac{1 \left(\frac{3}{2}\right)^{\frac{1}{2}}}{1} = \frac{\sqrt{6}}{2}$$
$$x_{2} = \frac{\left(-1\right) \left(\frac{3}{2}\right)^{\frac{1}{2}}}{1} + \frac{0}{1} = - \frac{\sqrt{6}}{2}$$
$$x_{3} = \frac{1 \cdot 0^{\frac{1}{2}}}{1} + \frac{0}{1} = 0$$
The graph
Sum and product of roots [src]
sum
       ___      ___
    -\/ 6     \/ 6 
0 + ------- + -----
       2        2  
$$\left(0\right) + \left(- \frac{\sqrt{6}}{2}\right) + \left(\frac{\sqrt{6}}{2}\right)$$
=
0
$$0$$
product
       ___      ___
    -\/ 6     \/ 6 
0 * ------- * -----
       2        2  
$$\left(0\right) * \left(- \frac{\sqrt{6}}{2}\right) * \left(\frac{\sqrt{6}}{2}\right)$$
=
0
$$0$$
Rapid solution [src]
x_1 = 0
$$x_{1} = 0$$
         ___ 
      -\/ 6  
x_2 = -------
         2   
$$x_{2} = - \frac{\sqrt{6}}{2}$$
        ___
      \/ 6 
x_3 = -----
        2  
$$x_{3} = \frac{\sqrt{6}}{2}$$
Numerical answer [src]
x1 = 0.0
x2 = -1.22474487139159
x3 = 1.22474487139159
x3 = 1.22474487139159
The graph
2x^4-3x^2=0 equation