Given the equation: 2x4−3x2=0 Do replacement v=x2 then the equation will be the: 2v2−3v=0 This equation is of the form av2+bv+c=0 A quadratic equation can be solved using the discriminant The roots of the quadratic equation: v1=2aD−b v2=2a−D−b where D=b2−4ac is the discriminant. Because a=2 b=−3 c=0 , then D=b2−4ac= (−1)2⋅4⋅0+(−3)2=9 Because D > 0, then the equation has two roots. v1=2a(−b+D) v2=2a(−b−D) or v1=23 Simplify v2=0 Simplify The final answer: Because v=x2 then x1=v1 x2=−v1 x3=v2 x4=−v2 then: x1=10+11(23)21=26 x2=1(−1)(23)21+10=−26 x3=11⋅021+10=0