Mister Exam

Other calculators


2^x=3

2^x=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x    
2  = 3
$$2^{x} = 3$$
Detail solution
Given the equation:
$$2^{x} = 3$$
or
$$2^{x} - 3 = 0$$
or
$$2^{x} = 3$$
or
$$2^{x} = 3$$
- this is the simplest exponential equation
Do replacement
$$v = 2^{x}$$
we get
$$v - 3 = 0$$
or
$$v - 3 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 3$$
We get the answer: v = 3
do backward replacement
$$2^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(3)
------
log(2)
$$\frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
=
log(3)
------
log(2)
$$\frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
product
log(3)
------
log(2)
$$\frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
=
log(3)
------
log(2)
$$\frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
log(3)/log(2)
Rapid solution [src]
     log(3)
x1 = ------
     log(2)
$$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(2 \right)}}$$
x1 = log(3)/log(2)
Numerical answer [src]
x1 = 1.58496250072116
x1 = 1.58496250072116
The graph
2^x=3 equation