Mister Exam

Other calculators


2^x=-1

2^x=-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x     
2  = -1
$$2^{x} = -1$$
Detail solution
Given the equation:
$$2^{x} = -1$$
or
$$2^{x} + 1 = 0$$
or
$$2^{x} = -1$$
or
$$2^{x} = -1$$
- this is the simplest exponential equation
Do replacement
$$v = 2^{x}$$
we get
$$v + 1 = 0$$
or
$$v + 1 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = -1$$
We get the answer: v = -1
do backward replacement
$$2^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(-1 \right)}}{\log{\left(2 \right)}} = \frac{i \pi}{\log{\left(2 \right)}}$$
The graph
Rapid solution [src]
      pi*I 
x1 = ------
     log(2)
$$x_{1} = \frac{i \pi}{\log{\left(2 \right)}}$$
x1 = i*pi/log(2)
Sum and product of roots [src]
sum
 pi*I 
------
log(2)
$$\frac{i \pi}{\log{\left(2 \right)}}$$
=
 pi*I 
------
log(2)
$$\frac{i \pi}{\log{\left(2 \right)}}$$
product
 pi*I 
------
log(2)
$$\frac{i \pi}{\log{\left(2 \right)}}$$
=
 pi*I 
------
log(2)
$$\frac{i \pi}{\log{\left(2 \right)}}$$
pi*i/log(2)
Numerical answer [src]
x1 = 4.53236014182719*i
x1 = 4.53236014182719*i
The graph
2^x=-1 equation