Mister Exam

Other calculators


2^x=5

2^x=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x    
2  = 5
$$2^{x} = 5$$
Detail solution
Given the equation:
$$2^{x} = 5$$
or
$$2^{x} - 5 = 0$$
or
$$2^{x} = 5$$
or
$$2^{x} = 5$$
- this is the simplest exponential equation
Do replacement
$$v = 2^{x}$$
we get
$$v - 5 = 0$$
or
$$v - 5 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 5$$
We get the answer: v = 5
do backward replacement
$$2^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(5 \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(5)
------
log(2)
$$\frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
=
log(5)
------
log(2)
$$\frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
product
log(5)
------
log(2)
$$\frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
=
log(5)
------
log(2)
$$\frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
log(5)/log(2)
Rapid solution [src]
     log(5)
x1 = ------
     log(2)
$$x_{1} = \frac{\log{\left(5 \right)}}{\log{\left(2 \right)}}$$
x1 = log(5)/log(2)
Numerical answer [src]
x1 = 2.32192809488736
x2 = 2.32192809488737
x2 = 2.32192809488737
The graph
2^x=5 equation