Mister Exam

Other calculators

2*x+y=37100 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*x + y = 37100
$$2 x + y = 37100$$
Detail solution
Given the linear equation:
2*x+y = 37100

Looking for similar summands in the left part:
y + 2*x = 37100

Move the summands with the other variables
from left part to right part, we given:
$$2 x = 37100 - y$$
Divide both parts of the equation by 2
x = 37100 - y / (2)

We get the answer: x = 18550 - y/2
The graph
Sum and product of roots [src]
sum
        re(y)   I*im(y)
18550 - ----- - -------
          2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
=
        re(y)   I*im(y)
18550 - ----- - -------
          2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
product
        re(y)   I*im(y)
18550 - ----- - -------
          2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
=
        re(y)   I*im(y)
18550 - ----- - -------
          2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
18550 - re(y)/2 - i*im(y)/2
Rapid solution [src]
             re(y)   I*im(y)
x1 = 18550 - ----- - -------
               2        2   
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
x1 = -re(y)/2 - i*im(y)/2 + 18550