2*x+y=37100 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
2*x+y = 37100
Looking for similar summands in the left part:
y + 2*x = 37100
Move the summands with the other variables
from left part to right part, we given:
$$2 x = 37100 - y$$
Divide both parts of the equation by 2
x = 37100 - y / (2)
We get the answer: x = 18550 - y/2
Sum and product of roots
[src]
re(y) I*im(y)
18550 - ----- - -------
2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
re(y) I*im(y)
18550 - ----- - -------
2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
re(y) I*im(y)
18550 - ----- - -------
2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
re(y) I*im(y)
18550 - ----- - -------
2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
18550 - re(y)/2 - i*im(y)/2
re(y) I*im(y)
x1 = 18550 - ----- - -------
2 2
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + 18550$$
x1 = -re(y)/2 - i*im(y)/2 + 18550