A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=−3 b=0 c=3 , then
rewrite the equation −3x2+3=0 of ax2+bx+c=0 as reduced quadratic equation x2+abx+ac=0 x2−1=0 px+x2+q=0 where p=ab p=0 q=ac q=−1 Vieta Formulas x1+x2=−p x1x2=q x1+x2=0 x1x2=−1