Mister Exam

Other calculators

z^2+3+4*i=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
z  + 3 + 4*I = 0
$$\left(z^{2} + 3\right) + 4 i = 0$$
Detail solution
This equation is of the form
a*z^2 + b*z + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 0$$
$$c = 3 + 4 i$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (1) * (3 + 4*i) = -12 - 16*i

The equation has two roots.
z1 = (-b + sqrt(D)) / (2*a)

z2 = (-b - sqrt(D)) / (2*a)

or
$$z_{1} = 1 - 2 i$$
$$z_{2} = -1 + 2 i$$
Vieta's Theorem
it is reduced quadratic equation
$$p z + q + z^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 3 + 4 i$$
Vieta Formulas
$$z_{1} + z_{2} = - p$$
$$z_{1} z_{2} = q$$
$$z_{1} + z_{2} = 0$$
$$z_{1} z_{2} = 3 + 4 i$$
The graph
Sum and product of roots [src]
sum
-1 + 2*I + 1 - 2*I
$$\left(1 - 2 i\right) + \left(-1 + 2 i\right)$$
=
0
$$0$$
product
(-1 + 2*I)*(1 - 2*I)
$$\left(-1 + 2 i\right) \left(1 - 2 i\right)$$
=
3 + 4*I
$$3 + 4 i$$
3 + 4*i
Rapid solution [src]
z1 = -1 + 2*I
$$z_{1} = -1 + 2 i$$
z2 = 1 - 2*I
$$z_{2} = 1 - 2 i$$
z2 = 1 - 2*i
Numerical answer [src]
z1 = -1.0 + 2.0*i
z2 = 1.0 - 2.0*i
z2 = 1.0 - 2.0*i