Mister Exam

Other calculators


sqrt(16-x^2)=2

sqrt(16-x^2)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   _________    
  /       2     
\/  16 - x   = 2
$$\sqrt{- x^{2} + 16} = 2$$
Detail solution
Given the equation
$$\sqrt{- x^{2} + 16} = 2$$
$$\sqrt{- x^{2} + 16} = 2$$
We raise the equation sides to 2-th degree
$$- x^{2} + 16 = 4$$
$$- x^{2} + 16 = 4$$
Transfer the right side of the equation left part with negative sign
$$- x^{2} + 12 = 0$$
This equation is of the form
$$a\ x^2 + b\ x + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = -1$$
$$b = 0$$
$$c = 12$$
, then
$$D = b^2 - 4\ a\ c = $$
$$0^{2} - \left(-1\right) 4 \cdot 12 = 48$$
Because D > 0, then the equation has two roots.
$$x_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$x_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$x_{1} = - 2 \sqrt{3}$$
Simplify
$$x_{2} = 2 \sqrt{3}$$
Simplify

Because
$$\sqrt{- x^{2} + 16} = 2$$
and
$$\sqrt{- x^{2} + 16} \geq 0$$
then
$$2 >= 0$$
The final answer:
$$x_{1} = - 2 \sqrt{3}$$
$$x_{2} = 2 \sqrt{3}$$
The graph
Rapid solution [src]
           ___
x_1 = -2*\/ 3 
$$x_{1} = - 2 \sqrt{3}$$
          ___
x_2 = 2*\/ 3 
$$x_{2} = 2 \sqrt{3}$$
Sum and product of roots [src]
sum
     ___       ___
-2*\/ 3  + 2*\/ 3 
$$\left(- 2 \sqrt{3}\right) + \left(2 \sqrt{3}\right)$$
=
0
$$0$$
product
     ___       ___
-2*\/ 3  * 2*\/ 3 
$$\left(- 2 \sqrt{3}\right) * \left(2 \sqrt{3}\right)$$
=
-12
$$-12$$
Numerical answer [src]
x1 = 3.46410161513775
x2 = -3.46410161513775
x2 = -3.46410161513775
The graph
sqrt(16-x^2)=2 equation