Mister Exam

Other calculators

sin(x)-cos(x)=0.7 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) - cos(x) = 7/10
$$\sin{\left(x \right)} - \cos{\left(x \right)} = \frac{7}{10}$$
The graph
Sum and product of roots [src]
sum
        /       _____\         /       _____\
        |10   \/ 151 |         |10   \/ 151 |
- 2*atan|-- - -------| - 2*atan|-- + -------|
        \3       3   /         \3       3   /
$$- 2 \operatorname{atan}{\left(\frac{10}{3} + \frac{\sqrt{151}}{3} \right)} - 2 \operatorname{atan}{\left(\frac{10}{3} - \frac{\sqrt{151}}{3} \right)}$$
=
        /       _____\         /       _____\
        |10   \/ 151 |         |10   \/ 151 |
- 2*atan|-- - -------| - 2*atan|-- + -------|
        \3       3   /         \3       3   /
$$- 2 \operatorname{atan}{\left(\frac{10}{3} + \frac{\sqrt{151}}{3} \right)} - 2 \operatorname{atan}{\left(\frac{10}{3} - \frac{\sqrt{151}}{3} \right)}$$
product
       /       _____\        /       _____\
       |10   \/ 151 |        |10   \/ 151 |
-2*atan|-- - -------|*-2*atan|-- + -------|
       \3       3   /        \3       3   /
$$- 2 \operatorname{atan}{\left(\frac{10}{3} - \frac{\sqrt{151}}{3} \right)} \left(- 2 \operatorname{atan}{\left(\frac{10}{3} + \frac{\sqrt{151}}{3} \right)}\right)$$
=
      /       _____\     /       _____\
      |10   \/ 151 |     |10   \/ 151 |
4*atan|-- - -------|*atan|-- + -------|
      \3       3   /     \3       3   /
$$4 \operatorname{atan}{\left(\frac{10}{3} - \frac{\sqrt{151}}{3} \right)} \operatorname{atan}{\left(\frac{10}{3} + \frac{\sqrt{151}}{3} \right)}$$
4*atan(10/3 - sqrt(151)/3)*atan(10/3 + sqrt(151)/3)
Rapid solution [src]
            /       _____\
            |10   \/ 151 |
x1 = -2*atan|-- - -------|
            \3       3   /
$$x_{1} = - 2 \operatorname{atan}{\left(\frac{10}{3} - \frac{\sqrt{151}}{3} \right)}$$
            /       _____\
            |10   \/ 151 |
x2 = -2*atan|-- + -------|
            \3       3   /
$$x_{2} = - 2 \operatorname{atan}{\left(\frac{10}{3} + \frac{\sqrt{151}}{3} \right)}$$
x2 = -2*atan(10/3 + sqrt(151)/3)
Numerical answer [src]
x1 = 59.9578528133439
x2 = -15.4403708728112
x3 = 47.3914821989847
x4 = 85.0905940420622
x5 = -2.87400025845199
x6 = 45.2855010819142
x7 = -4.97998137552249
x8 = -67.8118344473184
x9 = -17.5463519898817
x10 = -80.3782050616775
x11 = -48.9622785257796
x12 = 39.0023157747346
x13 = -46.8562974087091
x14 = 13.8695745460163
x15 = 91.3737793492418
x16 = 32.719130467555
x17 = -53.1394827158887
x18 = 7247.92184422679
x19 = 78.8074087348826
x20 = -92.9445756760367
x21 = 7.58638923883668
x22 = -11.2631666827021
x23 = 1.3032039316571
x24 = -36.3959079114204
x25 = -74.0950197544979
x26 = -84.5554092517866
x27 = -97.1217798661458
x28 = 41.1082968918051
x29 = -23.8295372970613
x30 = -71.9890386374274
x31 = 110.223335270781
x32 = 20.1527598531959
x33 = 89.2677982321713
x34 = -99.2277609832163
x35 = 34.8251115846255
x36 = -30.1127226042408
x37 = -55.2454638329592
x38 = 72.524223427703
x39 = 57.8518716962734
x40 = 82.9846129249917
x41 = -78.272223944607
x42 = 66.2410381205235
x43 = 53.6746675061643
x44 = 103.940149963601
x45 = -90.8385945589662
x46 = -1328.62610007334
x47 = 97.6569646564214
x48 = -65.7058533302479
x49 = -42.6790932186
x50 = -34.2899267943499
x51 = 76.7014276178121
x52 = 51.5686863890938
x53 = -59.4226680230683
x54 = 22.2587409702664
x55 = 70.4182423106326
x56 = 9.69237035590718
x57 = 28.5419262774459
x58 = 95.5509835393509
x59 = -28.0067414871703
x60 = 3.40918504872759
x61 = 15.9755556630868
x62 = -61.5286491401388
x63 = 26.4359451603754
x64 = -40.5731121015295
x65 = -9.15718556563158
x66 = -21.7235561799908
x67 = -86.6613903688571
x68 = 64.135057003453
x68 = 64.135057003453