Mister Exam

sin(x)=-2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) = -2
$$\sin{\left(x \right)} = -2$$
Detail solution
Given the equation
$$\sin{\left(x \right)} = -2$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
0 + pi + I*im(asin(2)) + re(asin(2)) + -re(asin(2)) - I*im(asin(2))
$$\left(0 + \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
=
pi
$$\pi$$
product
1*(pi + I*im(asin(2)) + re(asin(2)))*(-re(asin(2)) - I*im(asin(2)))
$$\left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) 1 \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
=
-(I*im(asin(2)) + re(asin(2)))*(pi + I*im(asin(2)) + re(asin(2)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
-(i*im(asin(2)) + re(asin(2)))*(pi + i*im(asin(2)) + re(asin(2)))
Rapid solution [src]
x1 = pi + I*im(asin(2)) + re(asin(2))
$$x_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
x2 = -re(asin(2)) - I*im(asin(2))
$$x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
Numerical answer [src]
x1 = 4.71238898038469 - 1.31695789692482*i
x2 = -1.5707963267949 + 1.31695789692482*i
x2 = -1.5707963267949 + 1.31695789692482*i
The graph
sin(x)=-2 equation