Mister Exam

Other calculators

sin(pi*x)/3=-1/2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(pi*x)       
--------- = -1/2
    3           
$$\frac{\sin{\left(\pi x \right)}}{3} = - \frac{1}{2}$$
Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{3} = - \frac{1}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3

The equation is transformed to
$$\sin{\left(\pi x \right)} = - \frac{3}{2}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
pi + re(asin(3/2))   I*im(asin(3/2))     re(asin(3/2))   I*im(asin(3/2))
------------------ + --------------- + - ------------- - ---------------
        pi                  pi                 pi               pi      
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) + \left(- \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)$$
=
pi + re(asin(3/2))   re(asin(3/2))
------------------ - -------------
        pi                 pi     
$$- \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi}{\pi}$$
product
/pi + re(asin(3/2))   I*im(asin(3/2))\ /  re(asin(3/2))   I*im(asin(3/2))\
|------------------ + ---------------|*|- ------------- - ---------------|
\        pi                  pi      / \        pi               pi      /
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) \left(- \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)$$
=
-(I*im(asin(3/2)) + re(asin(3/2)))*(pi + I*im(asin(3/2)) + re(asin(3/2))) 
--------------------------------------------------------------------------
                                     2                                    
                                   pi                                     
$$- \frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)}{\pi^{2}}$$
-(i*im(asin(3/2)) + re(asin(3/2)))*(pi + i*im(asin(3/2)) + re(asin(3/2)))/pi^2
Rapid solution [src]
     pi + re(asin(3/2))   I*im(asin(3/2))
x1 = ------------------ + ---------------
             pi                  pi      
$$x_{1} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
       re(asin(3/2))   I*im(asin(3/2))
x2 = - ------------- - ---------------
             pi               pi      
$$x_{2} = - \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
x2 = -re(asin(3/2))/pi - i*im(asin(3/2))/pi
Numerical answer [src]
x1 = 1.5 - 0.306348962530033*i
x2 = -0.5 + 0.306348962530033*i
x2 = -0.5 + 0.306348962530033*i