Mister Exam

Other calculators

sin(pi*x)/4=sqrt(2)/2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
              ___
sin(pi*x)   \/ 2 
--------- = -----
    4         2  
$$\frac{\sin{\left(\pi x \right)}}{4} = \frac{\sqrt{2}}{2}$$
Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{4} = \frac{\sqrt{2}}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/4

The equation is transformed to
$$\sin{\left(\pi x \right)} = 2 \sqrt{2}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
       /    /    ___\\       /    /    ___\\     /    /    ___\\       /    /    ___\\
pi - re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //   re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //
---------------------- - ------------------- + ----------------- + -------------------
          pi                      pi                   pi                   pi        
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right) + \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right)$$
=
       /    /    ___\\     /    /    ___\\
pi - re\asin\2*\/ 2 //   re\asin\2*\/ 2 //
---------------------- + -----------------
          pi                     pi       
$$\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
product
/       /    /    ___\\       /    /    ___\\\ /  /    /    ___\\       /    /    ___\\\
|pi - re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //| |re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //|
|---------------------- - -------------------|*|----------------- + -------------------|
\          pi                      pi        / \        pi                   pi        /
$$\left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right) \left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right)$$
=
/    /    /    ___\\     /    /    ___\\\ /       /    /    ___\\       /    /    ___\\\
\I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\pi - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 ///
----------------------------------------------------------------------------------------
                                            2                                           
                                          pi                                            
$$\frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)}{\pi^{2}}$$
(i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))*(pi - re(asin(2*sqrt(2))) - i*im(asin(2*sqrt(2))))/pi^2
Rapid solution [src]
            /    /    ___\\       /    /    ___\\
     pi - re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //
x1 = ---------------------- - -------------------
               pi                      pi        
$$x_{1} = \frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
       /    /    ___\\       /    /    ___\\
     re\asin\2*\/ 2 //   I*im\asin\2*\/ 2 //
x2 = ----------------- + -------------------
             pi                   pi        
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
x2 = re(asin(2*sqrt(2)))/pi + i*im(asin(2*sqrt(2)))/pi
Numerical answer [src]
x1 = 0.5 + 0.541140241435849*i
x2 = 0.5 - 0.541140241435849*i
x2 = 0.5 - 0.541140241435849*i