Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{4} = \frac{\sqrt{2}}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/4
The equation is transformed to
$$\sin{\left(\pi x \right)} = 2 \sqrt{2}$$
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
pi - re\asin\2*\/ 2 // I*im\asin\2*\/ 2 // re\asin\2*\/ 2 // I*im\asin\2*\/ 2 //
---------------------- - ------------------- + ----------------- + -------------------
pi pi pi pi
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right) + \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right)$$
/ / ___\\ / / ___\\
pi - re\asin\2*\/ 2 // re\asin\2*\/ 2 //
---------------------- + -----------------
pi pi
$$\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
|pi - re\asin\2*\/ 2 // I*im\asin\2*\/ 2 //| |re\asin\2*\/ 2 // I*im\asin\2*\/ 2 //|
|---------------------- - -------------------|*|----------------- + -------------------|
\ pi pi / \ pi pi /
$$\left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right) \left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
\I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\pi - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 ///
----------------------------------------------------------------------------------------
2
pi
$$\frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)}{\pi^{2}}$$
(i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))*(pi - re(asin(2*sqrt(2))) - i*im(asin(2*sqrt(2))))/pi^2
/ / ___\\ / / ___\\
pi - re\asin\2*\/ 2 // I*im\asin\2*\/ 2 //
x1 = ---------------------- - -------------------
pi pi
$$x_{1} = \frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
/ / ___\\ / / ___\\
re\asin\2*\/ 2 // I*im\asin\2*\/ 2 //
x2 = ----------------- + -------------------
pi pi
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}}{\pi}$$
x2 = re(asin(2*sqrt(2)))/pi + i*im(asin(2*sqrt(2)))/pi