Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{3} = \frac{1}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3
The equation is transformed to
$$\sin{\left(\pi x \right)} = \frac{3}{2}$$
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
pi - re(asin(3/2)) I*im(asin(3/2))
x1 = ------------------ - ---------------
pi pi
$$x_{1} = \frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
re(asin(3/2)) I*im(asin(3/2))
x2 = ------------- + ---------------
pi pi
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
Sum and product of roots
[src]
pi - re(asin(3/2)) I*im(asin(3/2)) re(asin(3/2)) I*im(asin(3/2))
0 + ------------------ - --------------- + ------------- + ---------------
pi pi pi pi
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) + \left(0 + \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)\right)$$
pi - re(asin(3/2)) re(asin(3/2))
------------------ + -------------
pi pi
$$\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
/pi - re(asin(3/2)) I*im(asin(3/2))\ /re(asin(3/2)) I*im(asin(3/2))\
1*|------------------ - ---------------|*|------------- + ---------------|
\ pi pi / \ pi pi /
$$1 \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) \left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)$$
(I*im(asin(3/2)) + re(asin(3/2)))*(pi - re(asin(3/2)) - I*im(asin(3/2)))
------------------------------------------------------------------------
2
pi
$$\frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)}{\pi^{2}}$$
(i*im(asin(3/2)) + re(asin(3/2)))*(pi - re(asin(3/2)) - i*im(asin(3/2)))/pi^2