Mister Exam

Other calculators


sin*(pi*x)/3=0,5

sin*(pi*x)/3=0,5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(pi*x)      
--------- = 1/2
    3          
$$\frac{\sin{\left(\pi x \right)}}{3} = \frac{1}{2}$$
Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{3} = \frac{1}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3

The equation is transformed to
$$\sin{\left(\pi x \right)} = \frac{3}{2}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
     pi - re(asin(3/2))   I*im(asin(3/2))
x1 = ------------------ - ---------------
             pi                  pi      
$$x_{1} = \frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
     re(asin(3/2))   I*im(asin(3/2))
x2 = ------------- + ---------------
           pi               pi      
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
Sum and product of roots [src]
sum
    pi - re(asin(3/2))   I*im(asin(3/2))   re(asin(3/2))   I*im(asin(3/2))
0 + ------------------ - --------------- + ------------- + ---------------
            pi                  pi               pi               pi      
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) + \left(0 + \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)\right)$$
=
pi - re(asin(3/2))   re(asin(3/2))
------------------ + -------------
        pi                 pi     
$$\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}$$
product
  /pi - re(asin(3/2))   I*im(asin(3/2))\ /re(asin(3/2))   I*im(asin(3/2))\
1*|------------------ - ---------------|*|------------- + ---------------|
  \        pi                  pi      / \      pi               pi      /
$$1 \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right) \left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}}{\pi}\right)$$
=
(I*im(asin(3/2)) + re(asin(3/2)))*(pi - re(asin(3/2)) - I*im(asin(3/2)))
------------------------------------------------------------------------
                                    2                                   
                                  pi                                    
$$\frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)}{\pi^{2}}$$
(i*im(asin(3/2)) + re(asin(3/2)))*(pi - re(asin(3/2)) - i*im(asin(3/2)))/pi^2
Numerical answer [src]
x1 = 0.5 + 0.306348962530033*i
x2 = 0.5 - 0.306348962530033*i
x2 = 0.5 - 0.306348962530033*i
The graph
sin*(pi*x)/3=0,5 equation