Mister Exam

Other calculators


sin(pi*x)/3=1

sin(pi*x)/3=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(pi*x)    
--------- = 1
    3        
$$\frac{\sin{\left(\pi x \right)}}{3} = 1$$
Detail solution
Given the equation
$$\frac{\sin{\left(\pi x \right)}}{3} = 1$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3

The equation is transformed to
$$\sin{\left(\pi x \right)} = 3$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
    pi - re(asin(3))   I*im(asin(3))   re(asin(3))   I*im(asin(3))
0 + ---------------- - ------------- + ----------- + -------------
           pi                pi             pi             pi     
$$\left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}\right) + \left(0 + \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}\right)\right)$$
=
pi - re(asin(3))   re(asin(3))
---------------- + -----------
       pi               pi    
$$\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} + \frac{\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}$$
product
  /pi - re(asin(3))   I*im(asin(3))\ /re(asin(3))   I*im(asin(3))\
1*|---------------- - -------------|*|----------- + -------------|
  \       pi                pi     / \     pi             pi     /
$$1 \left(\frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}\right) \left(\frac{\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}\right)$$
=
(I*im(asin(3)) + re(asin(3)))*(pi - re(asin(3)) - I*im(asin(3)))
----------------------------------------------------------------
                                2                               
                              pi                                
$$\frac{\left(\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right)}{\pi^{2}}$$
(i*im(asin(3)) + re(asin(3)))*(pi - re(asin(3)) - i*im(asin(3)))/pi^2
Rapid solution [src]
     pi - re(asin(3))   I*im(asin(3))
x1 = ---------------- - -------------
            pi                pi     
$$x_{1} = \frac{\pi - \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} - \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}$$
     re(asin(3))   I*im(asin(3))
x2 = ----------- + -------------
          pi             pi     
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi} + \frac{i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}}{\pi}$$
Numerical answer [src]
x1 = 0.5 + 0.56109985233918*i
x2 = 0.5 - 0.56109985233918*i
x2 = 0.5 - 0.56109985233918*i
The graph
sin(pi*x)/3=1 equation