This equation is of the form
a*y^2 + b*y + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -4$$
$$b = 0$$
$$c = 1$$
, then
D = b^2 - 4 * a * c =
(0)^2 - 4 * (-4) * (1) = 16
Because D > 0, then the equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)
y2 = (-b - sqrt(D)) / (2*a)
or
$$y_{1} = - \frac{1}{2}$$
$$y_{2} = \frac{1}{2}$$