-5x-11y=16 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
-5*x-11*y = 16
Looking for similar summands in the left part:
-11*y - 5*x = 16
Move the summands with the other variables
from left part to right part, we given:
$$- 5 x = 11 y + 16$$
Divide both parts of the equation by -5
x = 16 + 11*y / (-5)
We get the answer: x = -16/5 - 11*y/5
16 11*re(y) 11*I*im(y)
x1 = - -- - -------- - ----------
5 5 5
$$x_{1} = - \frac{11 \operatorname{re}{\left(y\right)}}{5} - \frac{11 i \operatorname{im}{\left(y\right)}}{5} - \frac{16}{5}$$
x1 = -11*re(y)/5 - 11*i*im(y)/5 - 16/5
Sum and product of roots
[src]
16 11*re(y) 11*I*im(y)
- -- - -------- - ----------
5 5 5
$$- \frac{11 \operatorname{re}{\left(y\right)}}{5} - \frac{11 i \operatorname{im}{\left(y\right)}}{5} - \frac{16}{5}$$
16 11*re(y) 11*I*im(y)
- -- - -------- - ----------
5 5 5
$$- \frac{11 \operatorname{re}{\left(y\right)}}{5} - \frac{11 i \operatorname{im}{\left(y\right)}}{5} - \frac{16}{5}$$
16 11*re(y) 11*I*im(y)
- -- - -------- - ----------
5 5 5
$$- \frac{11 \operatorname{re}{\left(y\right)}}{5} - \frac{11 i \operatorname{im}{\left(y\right)}}{5} - \frac{16}{5}$$
16 11*re(y) 11*I*im(y)
- -- - -------- - ----------
5 5 5
$$- \frac{11 \operatorname{re}{\left(y\right)}}{5} - \frac{11 i \operatorname{im}{\left(y\right)}}{5} - \frac{16}{5}$$
-16/5 - 11*re(y)/5 - 11*i*im(y)/5