Mister Exam

Other calculators

5x-11y=16 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
5*x - 11*y = 16
$$5 x - 11 y = 16$$
Detail solution
Given the linear equation:
5*x-11*y = 16

Looking for similar summands in the left part:
-11*y + 5*x = 16

Move the summands with the other variables
from left part to right part, we given:
$$- 11 y = 16 - 5 x$$
Divide both parts of the equation by -11
y = 16 - 5*x / (-11)

We get the answer: y = -16/11 + 5*x/11
The graph
Rapid solution [src]
       16   5*re(x)   5*I*im(x)
y1 = - -- + ------- + ---------
       11      11         11   
$$y_{1} = \frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
y1 = 5*re(x)/11 + 5*i*im(x)/11 - 16/11
Sum and product of roots [src]
sum
  16   5*re(x)   5*I*im(x)
- -- + ------- + ---------
  11      11         11   
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
=
  16   5*re(x)   5*I*im(x)
- -- + ------- + ---------
  11      11         11   
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
product
  16   5*re(x)   5*I*im(x)
- -- + ------- + ---------
  11      11         11   
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
=
  16   5*re(x)   5*I*im(x)
- -- + ------- + ---------
  11      11         11   
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
-16/11 + 5*re(x)/11 + 5*i*im(x)/11