5x-11y=16 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
5*x-11*y = 16
Looking for similar summands in the left part:
-11*y + 5*x = 16
Move the summands with the other variables
from left part to right part, we given:
$$- 11 y = 16 - 5 x$$
Divide both parts of the equation by -11
y = 16 - 5*x / (-11)
We get the answer: y = -16/11 + 5*x/11
16 5*re(x) 5*I*im(x)
y1 = - -- + ------- + ---------
11 11 11
$$y_{1} = \frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
y1 = 5*re(x)/11 + 5*i*im(x)/11 - 16/11
Sum and product of roots
[src]
16 5*re(x) 5*I*im(x)
- -- + ------- + ---------
11 11 11
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
16 5*re(x) 5*I*im(x)
- -- + ------- + ---------
11 11 11
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
16 5*re(x) 5*I*im(x)
- -- + ------- + ---------
11 11 11
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
16 5*re(x) 5*I*im(x)
- -- + ------- + ---------
11 11 11
$$\frac{5 \operatorname{re}{\left(x\right)}}{11} + \frac{5 i \operatorname{im}{\left(x\right)}}{11} - \frac{16}{11}$$
-16/11 + 5*re(x)/11 + 5*i*im(x)/11