Mister Exam

Other calculators

log(y+1)=Const-log(cos(x)) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(y + 1) = c - log(cos(x))
$$\log{\left(y + 1 \right)} = c - \log{\left(\cos{\left(x \right)} \right)}$$
The graph
Rapid solution [src]
         /    /   c \\              /    /   c \\
         |    |  e  ||              |    |  e  ||
x1 = - re|acos|-----|| + 2*pi - I*im|acos|-----||
         \    \1 + y//              \    \1 + y//
$$x_{1} = - \operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + 2 \pi$$
         /    /   c \\     /    /   c \\
         |    |  e  ||     |    |  e  ||
x2 = I*im|acos|-----|| + re|acos|-----||
         \    \1 + y//     \    \1 + y//
$$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)}$$
x2 = re(acos(exp(c)/(y + 1))) + i*im(acos(exp(c)/(y + 1)))
Sum and product of roots [src]
sum
    /    /   c \\              /    /   c \\       /    /   c \\     /    /   c \\
    |    |  e  ||              |    |  e  ||       |    |  e  ||     |    |  e  ||
- re|acos|-----|| + 2*pi - I*im|acos|-----|| + I*im|acos|-----|| + re|acos|-----||
    \    \1 + y//              \    \1 + y//       \    \1 + y//     \    \1 + y//
$$\left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + 2 \pi\right)$$
=
2*pi
$$2 \pi$$
product
/    /    /   c \\              /    /   c \\\ /    /    /   c \\     /    /   c \\\
|    |    |  e  ||              |    |  e  ||| |    |    |  e  ||     |    |  e  |||
|- re|acos|-----|| + 2*pi - I*im|acos|-----|||*|I*im|acos|-----|| + re|acos|-----|||
\    \    \1 + y//              \    \1 + y/// \    \    \1 + y//     \    \1 + y///
$$\left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + 2 \pi\right)$$
=
 /    /    /   c \\     /    /   c \\\ /            /    /   c \\     /    /   c \\\
 |    |    |  e  ||     |    |  e  ||| |            |    |  e  ||     |    |  e  |||
-|I*im|acos|-----|| + re|acos|-----|||*|-2*pi + I*im|acos|-----|| + re|acos|-----|||
 \    \    \1 + y//     \    \1 + y/// \            \    \1 + y//     \    \1 + y///
$$- \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{e^{c}}{y + 1} \right)}\right)} - 2 \pi\right)$$
-(i*im(acos(exp(c)/(1 + y))) + re(acos(exp(c)/(1 + y))))*(-2*pi + i*im(acos(exp(c)/(1 + y))) + re(acos(exp(c)/(1 + y))))