The teacher will be very surprised to see your correct solution 😉
1 1
log(y) + - = - + log(x)
y x
/ / -1 \\ / / -1 \\
| | --- || | | --- ||
| | y || | | y ||
| |-e || | |-e ||
| 1 + y*W|------|| | 1 + y*W|------||
| \ y /| | \ y /|
| ---------------| | ---------------|
| y | | y |
x1 = I*im\y*e / + re\y*e /
x1 = re(y*exp((y*LambertW(-exp(-1/y)/y) + 1)/y)) + i*im(y*exp((y*LambertW(-exp(-1/y)/y) + 1)/y))
sum
/ / -1 \\ / / -1 \\
| | --- || | | --- ||
| | y || | | y ||
| |-e || | |-e ||
| 1 + y*W|------|| | 1 + y*W|------||
| \ y /| | \ y /|
| ---------------| | ---------------|
| y | | y |
I*im\y*e / + re\y*e /
=
/ / -1 \\ / / -1 \\
| | --- || | | --- ||
| | y || | | y ||
| |-e || | |-e ||
| 1 + y*W|------|| | 1 + y*W|------||
| \ y /| | \ y /|
| ---------------| | ---------------|
| y | | y |
I*im\y*e / + re\y*e /
product
/ / -1 \\ / / -1 \\
| | --- || | | --- ||
| | y || | | y ||
| |-e || | |-e ||
| 1 + y*W|------|| | 1 + y*W|------||
| \ y /| | \ y /|
| ---------------| | ---------------|
| y | | y |
I*im\y*e / + re\y*e /
=
/ / -1 \\ / / -1 \\
| | --- || | | --- ||
| | y || | | y ||
| |-e || | |-e ||
| 1 + y*W|------|| | 1 + y*W|------||
| \ y /| | \ y /|
| ---------------| | ---------------|
| y | | y |
I*im\y*e / + re\y*e /
i*im(y*exp((1 + y*LambertW(-exp(-1/y)/y))/y)) + re(y*exp((1 + y*LambertW(-exp(-1/y)/y))/y))