log5(5-x)=log53 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\frac{\log{\left(5 - x \right)}}{\log{\left(5 \right)}} = \log{\left(53 \right)}$$
$$\frac{\log{\left(5 - x \right)}}{\log{\left(5 \right)}} = \log{\left(53 \right)}$$
Let's divide both parts of the equation by the multiplier of log =1/log(5)
$$\log{\left(5 - x \right)} = \log{\left(5 \right)} \log{\left(53 \right)}$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$5 - x = e^{\frac{\log{\left(53 \right)}}{\frac{1}{\log{\left(5 \right)}}}}$$
simplify
$$5 - x = e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
$$- x = -5 + e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
$$x = 5 - e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
Sum and product of roots
[src]
$$5 - 53^{\log{\left(5 \right)}}$$
$$5 - 53^{\log{\left(5 \right)}}$$
$$5 - 53^{\log{\left(5 \right)}}$$
$$5 - 53^{\log{\left(5 \right)}}$$
$$x_{1} = 5 - 53^{\log{\left(5 \right)}}$$