Mister Exam

Other calculators

log5(5-x)=log53 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(5 - x)          
---------- = log(53)
  log(5)            
$$\frac{\log{\left(5 - x \right)}}{\log{\left(5 \right)}} = \log{\left(53 \right)}$$
Detail solution
Given the equation
$$\frac{\log{\left(5 - x \right)}}{\log{\left(5 \right)}} = \log{\left(53 \right)}$$
$$\frac{\log{\left(5 - x \right)}}{\log{\left(5 \right)}} = \log{\left(53 \right)}$$
Let's divide both parts of the equation by the multiplier of log =1/log(5)
$$\log{\left(5 - x \right)} = \log{\left(5 \right)} \log{\left(53 \right)}$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$5 - x = e^{\frac{\log{\left(53 \right)}}{\frac{1}{\log{\left(5 \right)}}}}$$
simplify
$$5 - x = e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
$$- x = -5 + e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
$$x = 5 - e^{\log{\left(5 \right)} \log{\left(53 \right)}}$$
The graph
Sum and product of roots [src]
sum
      log(5)
5 - 53      
$$5 - 53^{\log{\left(5 \right)}}$$
=
      log(5)
5 - 53      
$$5 - 53^{\log{\left(5 \right)}}$$
product
      log(5)
5 - 53      
$$5 - 53^{\log{\left(5 \right)}}$$
=
      log(5)
5 - 53      
$$5 - 53^{\log{\left(5 \right)}}$$
5 - 53^log(5)
Rapid solution [src]
           log(5)
x1 = 5 - 53      
$$x_{1} = 5 - 53^{\log{\left(5 \right)}}$$
x1 = 5 - 53^log(5)
Numerical answer [src]
x1 = -590.819833810348
x1 = -590.819833810348