Mister Exam

Other calculators

log5(3x-2)=log5*7 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(3*x - 2)           
------------ = log(5)*7
   log(5)              
$$\frac{\log{\left(3 x - 2 \right)}}{\log{\left(5 \right)}} = 7 \log{\left(5 \right)}$$
Detail solution
Given the equation
$$\frac{\log{\left(3 x - 2 \right)}}{\log{\left(5 \right)}} = 7 \log{\left(5 \right)}$$
$$\frac{\log{\left(3 x - 2 \right)}}{\log{\left(5 \right)}} = 7 \log{\left(5 \right)}$$
Let's divide both parts of the equation by the multiplier of log =1/log(5)
$$\log{\left(3 x - 2 \right)} = 7 \log{\left(5 \right)}^{2}$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$3 x - 2 = e^{\frac{7 \log{\left(5 \right)}}{\frac{1}{\log{\left(5 \right)}}}}$$
simplify
$$3 x - 2 = e^{7 \log{\left(5 \right)}^{2}}$$
$$3 x = 2 + e^{7 \log{\left(5 \right)}^{2}}$$
$$x = \frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
The graph
Sum and product of roots [src]
sum
          2   
     7*log (5)
2   e         
- + ----------
3       3     
$$\frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
=
          2   
     7*log (5)
2   e         
- + ----------
3       3     
$$\frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
product
          2   
     7*log (5)
2   e         
- + ----------
3       3     
$$\frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
=
          2   
     7*log (5)
2   e         
- + ----------
3       3     
$$\frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
2/3 + exp(7*log(5)^2)/3
Rapid solution [src]
               2   
          7*log (5)
     2   e         
x1 = - + ----------
     3       3     
$$x_{1} = \frac{2}{3} + \frac{e^{7 \log{\left(5 \right)}^{2}}}{3}$$
x1 = 2/3 + exp(7*log(5)^2)/3
Numerical answer [src]
x1 = 24975864.4843036
x2 = 24975864.4843036 - 2.39932855713934e-19*i
x2 = 24975864.4843036 - 2.39932855713934e-19*i