Mister Exam

Other calculators


lnx+1-2x=0

lnx+1-2x=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(x) + 1 - 2*x = 0
$$- 2 x + \log{\left(x \right)} + 1 = 0$$
The graph
Rapid solution [src]
          / /    -1\\       / /    -1\\
        re\W\-2*e  //   I*im\W\-2*e  //
x_1 = - ------------- - ---------------
              2                2       
$$x_{1} = - \frac{\operatorname{re}{\left(W\left(- \frac{2}{e}\right)\right)}}{2} - \frac{i \operatorname{im}{\left(W\left(- \frac{2}{e}\right)\right)}}{2}$$
Sum and product of roots [src]
sum
    / /    -1\\       / /    -1\\
  re\W\-2*e  //   I*im\W\-2*e  //
- ------------- - ---------------
        2                2       
$$\left(- \frac{\operatorname{re}{\left(W\left(- \frac{2}{e}\right)\right)}}{2} - \frac{i \operatorname{im}{\left(W\left(- \frac{2}{e}\right)\right)}}{2}\right)$$
=
    / /    -1\\       / /    -1\\
  re\W\-2*e  //   I*im\W\-2*e  //
- ------------- - ---------------
        2                2       
$$- \frac{\operatorname{re}{\left(W\left(- \frac{2}{e}\right)\right)}}{2} - \frac{i \operatorname{im}{\left(W\left(- \frac{2}{e}\right)\right)}}{2}$$
product
    / /    -1\\       / /    -1\\
  re\W\-2*e  //   I*im\W\-2*e  //
- ------------- - ---------------
        2                2       
$$\left(- \frac{\operatorname{re}{\left(W\left(- \frac{2}{e}\right)\right)}}{2} - \frac{i \operatorname{im}{\left(W\left(- \frac{2}{e}\right)\right)}}{2}\right)$$
=
    / /    -1\\       / /    -1\\
  re\W\-2*e  //   I*im\W\-2*e  //
- ------------- - ---------------
        2                2       
$$- \frac{\operatorname{re}{\left(W\left(- \frac{2}{e}\right)\right)}}{2} - \frac{i \operatorname{im}{\left(W\left(- \frac{2}{e}\right)\right)}}{2}$$
Numerical answer [src]
x1 = 0.265323182170863 + 0.566336248802441*i
x1 = 0.265323182170863 + 0.566336248802441*i
The graph
lnx+1-2x=0 equation