A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: k1=2aD−b k2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=1 b=−5 c=6 , then
D = b^2 - 4 * a * c =
(-5)^2 - 4 * (1) * (6) = 1
Because D > 0, then the equation has two roots.
k1 = (-b + sqrt(D)) / (2*a)
k2 = (-b - sqrt(D)) / (2*a)
or k1=3 k2=2
Vieta's Theorem
it is reduced quadratic equation k2+kp+q=0 where p=ab p=−5 q=ac q=6 Vieta Formulas k1+k2=−p k1k2=q k1+k2=5 k1k2=6