5^(9-x)=64 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$5^{9 - x} = 64$$
or
$$5^{9 - x} - 64 = 0$$
or
$$1953125 \cdot 5^{- x} = 64$$
or
$$\left(\frac{1}{5}\right)^{x} = \frac{64}{1953125}$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{5}\right)^{x}$$
we get
$$v - \frac{64}{1953125} = 0$$
or
$$v - \frac{64}{1953125} = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = \frac{64}{1953125}$$
We get the answer: v = 64/1953125
do backward replacement
$$\left(\frac{1}{5}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(5 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{64}{1953125} \right)}}{\log{\left(\frac{1}{5} \right)}} = - \frac{6 \log{\left(2 \right)}}{\log{\left(5 \right)}} + 9$$
Sum and product of roots
[src]
/ 3 \
| ------|
| log(5)|
log\125/4 /
$$\log{\left(\left(\frac{125}{4}\right)^{\frac{3}{\log{\left(5 \right)}}} \right)}$$
/ 3 \
| ------|
| log(5)|
log\125/4 /
$$\log{\left(\left(\frac{125}{4}\right)^{\frac{3}{\log{\left(5 \right)}}} \right)}$$
/ 3 \
| ------|
| log(5)|
log\125/4 /
$$\log{\left(\left(\frac{125}{4}\right)^{\frac{3}{\log{\left(5 \right)}}} \right)}$$
6*log(2)
9 - --------
log(5)
$$- \frac{6 \log{\left(2 \right)}}{\log{\left(5 \right)}} + 9$$
/ 3 \
| ------|
| log(5)|
x1 = log\125/4 /
$$x_{1} = \log{\left(\left(\frac{125}{4}\right)^{\frac{3}{\log{\left(5 \right)}}} \right)}$$
x1 = log((125/4)^(3/log(5)))