Mister Exam

Other calculators


3*x^2+x-10=0

3*x^2+x-10=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2             
3*x  + x - 10 = 0
$$\left(3 x^{2} + x\right) - 10 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 1$$
$$c = -10$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (3) * (-10) = 121

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{5}{3}$$
$$x_{2} = -2$$
Vieta's Theorem
rewrite the equation
$$\left(3 x^{2} + x\right) - 10 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{x}{3} - \frac{10}{3} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{1}{3}$$
$$q = \frac{c}{a}$$
$$q = - \frac{10}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{1}{3}$$
$$x_{1} x_{2} = - \frac{10}{3}$$
The graph
Rapid solution [src]
x1 = -2
$$x_{1} = -2$$
x2 = 5/3
$$x_{2} = \frac{5}{3}$$
x2 = 5/3
Sum and product of roots [src]
sum
-2 + 5/3
$$-2 + \frac{5}{3}$$
=
-1/3
$$- \frac{1}{3}$$
product
-2*5
----
 3  
$$- \frac{10}{3}$$
=
-10/3
$$- \frac{10}{3}$$
-10/3
Numerical answer [src]
x1 = -2.0
x2 = 1.66666666666667
x2 = 1.66666666666667
The graph
3*x^2+x-10=0 equation