Mister Exam

Other calculators


5*x^2-4=0

5*x^2-4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
5*x  - 4 = 0
$$5 x^{2} - 4 = 0$$
Detail solution
This equation is of the form
$$a*x^2 + b*x + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 5$$
$$b = 0$$
$$c = -4$$
, then
$$D = b^2 - 4 * a * c = $$
$$0^{2} - 5 \cdot 4 \left(-4\right) = 80$$
Because D > 0, then the equation has two roots.
$$x_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$x_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$x_{1} = \frac{2 \sqrt{5}}{5}$$
Simplify
$$x_{2} = - \frac{2 \sqrt{5}}{5}$$
Simplify
Vieta's Theorem
rewrite the equation
$$5 x^{2} - 4 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{4}{5} = 0$$
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = - \frac{4}{5}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = - \frac{4}{5}$$
The graph
Sum and product of roots [src]
sum
     ___       ___
-2*\/ 5    2*\/ 5 
-------- + -------
   5          5   
$$\left(- \frac{2 \sqrt{5}}{5}\right) + \left(\frac{2 \sqrt{5}}{5}\right)$$
=
0
$$0$$
product
     ___       ___
-2*\/ 5    2*\/ 5 
-------- * -------
   5          5   
$$\left(- \frac{2 \sqrt{5}}{5}\right) * \left(\frac{2 \sqrt{5}}{5}\right)$$
=
-4/5
$$- \frac{4}{5}$$
Rapid solution [src]
           ___
      -2*\/ 5 
x_1 = --------
         5    
$$x_{1} = - \frac{2 \sqrt{5}}{5}$$
          ___
      2*\/ 5 
x_2 = -------
         5   
$$x_{2} = \frac{2 \sqrt{5}}{5}$$
Numerical answer [src]
x1 = 0.894427190999916
x2 = -0.894427190999916
x2 = -0.894427190999916
The graph
5*x^2-4=0 equation