a*x=b equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
a*x = b
Divide both parts of the equation by a
x = b / (a)
We get the answer: x = b/a
The solution of the parametric equation
Given the equation with a parameter:
$$a x = b$$
Коэффициент при x равен
$$a$$
then possible cases for a :
$$a < 0$$
$$a = 0$$
Consider all cases in more detail:
With
$$a < 0$$
the equation
$$- b - x = 0$$
its solution
$$x = - b$$
With
$$a = 0$$
the equation
$$- b = 0$$
its solution
Sum and product of roots
[src]
/b\ /b\
I*im|-| + re|-|
\a/ \a/
$$\operatorname{re}{\left(\frac{b}{a}\right)} + i \operatorname{im}{\left(\frac{b}{a}\right)}$$
/b\ /b\
I*im|-| + re|-|
\a/ \a/
$$\operatorname{re}{\left(\frac{b}{a}\right)} + i \operatorname{im}{\left(\frac{b}{a}\right)}$$
/b\ /b\
I*im|-| + re|-|
\a/ \a/
$$\operatorname{re}{\left(\frac{b}{a}\right)} + i \operatorname{im}{\left(\frac{b}{a}\right)}$$
/b\ /b\
I*im|-| + re|-|
\a/ \a/
$$\operatorname{re}{\left(\frac{b}{a}\right)} + i \operatorname{im}{\left(\frac{b}{a}\right)}$$
/b\ /b\
x1 = I*im|-| + re|-|
\a/ \a/
$$x_{1} = \operatorname{re}{\left(\frac{b}{a}\right)} + i \operatorname{im}{\left(\frac{b}{a}\right)}$$