Mister Exam

Other calculators

5/5000-(5-x)*3000/(0.99*2000*5000)=((5-x)*3000/(0,99*2000)+0,7)/5000+(5-x)/(100*2000) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
                      (5 - x)*3000   7          
                      ------------ + --         
                       /99*2000\     10         
                       |-------|                
 1     (5 - x)*3000    \  100  /          5 - x 
---- - ------------ = ----------------- + ------
1000   99*2000               5000         200000
       -------*5000                             
         100                                    
$$- \frac{3000 \left(5 - x\right)}{5000 \frac{99 \cdot 2000}{100}} + \frac{1}{1000} = \frac{5 - x}{200000} + \frac{\frac{3000 \left(5 - x\right)}{\frac{99}{100} \cdot 2000} + \frac{7}{10}}{5000}$$
Detail solution
Given the linear equation:
5/5000-(5-x)*3000/((99/100)*2000*5000) = ((5-x)*3000/((99/100)*2000)+(7/10))/5000+(5-x)/(100*2000)

Expand brackets in the left part
5/5000-5*3000/+x*3000/99/100*2000*5000) = ((5-x)*3000/((99/100)*2000)+(7/10))/5000+(5-x)/(100*2000)

Expand brackets in the right part
5/5000-5*3000/+x*3000/99/100*2000*5000) = 5*3000/-x*3000/99/100*2000)+7/10)/5000+5-x100*2000

Looking for similar summands in the left part:
-17/33000 + x/3300 = 5*3000/-x*3000/99/100*2000)+7/10)/5000+5-x100*2000

Looking for similar summands in the right part:
-17/33000 + x/3300 = 11089/6600000 - 2033*x/6600000

Move free summands (without x)
from left part to right part, we given:
$$\frac{x}{3300} = \frac{14489}{6600000} - \frac{2033 x}{6600000}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{4033 x}{6600000} = \frac{14489}{6600000}$$
Divide both parts of the equation by 4033/6600000
x = 14489/6600000 / (4033/6600000)

We get the answer: x = 14489/4033
The graph
Sum and product of roots [src]
sum
14489
-----
 4033
$$\frac{14489}{4033}$$
=
14489
-----
 4033
$$\frac{14489}{4033}$$
product
14489
-----
 4033
$$\frac{14489}{4033}$$
=
14489
-----
 4033
$$\frac{14489}{4033}$$
14489/4033
Rapid solution [src]
     14489
x1 = -----
      4033
$$x_{1} = \frac{14489}{4033}$$
x1 = 14489/4033
Numerical answer [src]
x1 = 3.59261095958344
x1 = 3.59261095958344