Cx-1^x*(x-1)=30 equation
The teacher will be very surprised to see your correct solution 😉
The solution
The solution of the parametric equation
Given the equation with a parameter:
$$c x - x + 1 = 30$$
Коэффициент при x равен
$$c - 1$$
then possible cases for c :
$$c < 1$$
$$c = 1$$
Consider all cases in more detail:
With
$$c < 1$$
the equation
$$- x - 29 = 0$$
its solution
$$x = -29$$
With
$$c = 1$$
the equation
$$-29 = 0$$
its solution
no solutions
29*(-1 + re(c)) 29*I*im(c)
x1 = ---------------------- - ----------------------
2 2 2 2
(-1 + re(c)) + im (c) (-1 + re(c)) + im (c)
$$x_{1} = \frac{29 \left(\operatorname{re}{\left(c\right)} - 1\right)}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} - \frac{29 i \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
x1 = 29*(re(c) - 1)/((re(c) - 1)^2 + im(c)^2) - 29*i*im(c)/((re(c) - 1)^2 + im(c)^2)
Sum and product of roots
[src]
29*(-1 + re(c)) 29*I*im(c)
---------------------- - ----------------------
2 2 2 2
(-1 + re(c)) + im (c) (-1 + re(c)) + im (c)
$$\frac{29 \left(\operatorname{re}{\left(c\right)} - 1\right)}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} - \frac{29 i \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
29*(-1 + re(c)) 29*I*im(c)
---------------------- - ----------------------
2 2 2 2
(-1 + re(c)) + im (c) (-1 + re(c)) + im (c)
$$\frac{29 \left(\operatorname{re}{\left(c\right)} - 1\right)}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} - \frac{29 i \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
29*(-1 + re(c)) 29*I*im(c)
---------------------- - ----------------------
2 2 2 2
(-1 + re(c)) + im (c) (-1 + re(c)) + im (c)
$$\frac{29 \left(\operatorname{re}{\left(c\right)} - 1\right)}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} - \frac{29 i \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
29*(-1 - I*im(c) + re(c))
-------------------------
2 2
(-1 + re(c)) + im (c)
$$\frac{29 \left(\operatorname{re}{\left(c\right)} - i \operatorname{im}{\left(c\right)} - 1\right)}{\left(\operatorname{re}{\left(c\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
29*(-1 - i*im(c) + re(c))/((-1 + re(c))^2 + im(c)^2)