Mister Exam

Other calculators

cosx/5=1/2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
cos(x)      
------ = 1/2
  5         
$$\frac{\cos{\left(x \right)}}{5} = \frac{1}{2}$$
Detail solution
Given the equation
$$\frac{\cos{\left(x \right)}}{5} = \frac{1}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/5

The equation is transformed to
$$\cos{\left(x \right)} = \frac{5}{2}$$
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
x1 = 2*pi - I*im(acos(5/2))
$$x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}$$
x2 = I*im(acos(5/2)) + re(acos(5/2))
$$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}$$
x2 = re(acos(5/2)) + i*im(acos(5/2))
Sum and product of roots [src]
sum
2*pi - I*im(acos(5/2)) + I*im(acos(5/2)) + re(acos(5/2))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)$$
=
2*pi + re(acos(5/2))
$$\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + 2 \pi$$
product
(2*pi - I*im(acos(5/2)))*(I*im(acos(5/2)) + re(acos(5/2)))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)$$
=
(2*pi - I*im(acos(5/2)))*(I*im(acos(5/2)) + re(acos(5/2)))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5}{2} \right)}\right)}\right)$$
(2*pi - i*im(acos(5/2)))*(i*im(acos(5/2)) + re(acos(5/2)))
Numerical answer [src]
x1 = 6.28318530717959 - 1.56679923697241*i
x2 = 1.56679923697241*i
x2 = 1.56679923697241*i