(a+3)x=(a+3)(a-2) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
(a+3)*x = (a+3)*(a-2)
Expand brackets in the left part
a+3x = (a+3)*(a-2)
Expand brackets in the right part
a+3x = a+3a-2
Looking for similar summands in the left part:
x*(3 + a) = a+3a-2
Looking for similar summands in the right part:
x*(3 + a) = (-2 + a)*(3 + a)
Divide both parts of the equation by 3 + a
x = (-2 + a)*(3 + a) / (3 + a)
We get the answer: x = -2 + a
The solution of the parametric equation
Given the equation with a parameter:
$$x \left(a + 3\right) = \left(a - 2\right) \left(a + 3\right)$$
Коэффициент при x равен
$$a + 3$$
then possible cases for a :
$$a < -3$$
$$a = -3$$
Consider all cases in more detail:
With
$$a < -3$$
the equation
$$- x - 6 = 0$$
its solution
$$x = -6$$
With
$$a = -3$$
the equation
$$0 = 0$$
its solution
any x
Sum and product of roots
[src]
$$\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 2$$
$$\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 2$$
$$\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 2$$
$$\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 2$$
x1 = -2 + I*im(a) + re(a)
$$x_{1} = \operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 2$$