Given the equation
$$\left(- \sqrt{3 x} + \left(\sqrt{7 x} - 5\right)\right) - 2 = \sqrt{4 x} - 3$$
Transfer the right side of the equation left part with negative sign
$$\sqrt{x} \left(-2 - \sqrt{3} + \sqrt{7}\right) = 4$$
We raise the equation sides to 2-th degree
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
Transfer the right side of the equation left part with negative sign
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} - 16 = 0$$
Expand brackets in the left part
-16 + x-2+sqrt+7 - sqrt3)^2 = 0
Looking for similar summands in the left part:
-16 + x*(-2 + sqrt(7) - sqrt(3))^2 = 0
Move free summands (without x)
from left part to right part, we given:
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
Divide both parts of the equation by (-2 + sqrt(7) - sqrt(3))^2
x = 16 / ((-2 + sqrt(7) - sqrt(3))^2)
We get the answer: x = 16/(2 + sqrt(3) - sqrt(7))^2
Because
$$\sqrt{x} = \frac{4}{-2 - \sqrt{3} + \sqrt{7}}$$
and
$$\sqrt{x} \geq 0$$
then
$$\frac{4}{-2 - \sqrt{3} + \sqrt{7}} \geq 0$$
The final answer:
This equation has no roots