Mister Exam

Other calculators

√7x-5-√3x-2=√4x-3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  _____         _____         _____    
\/ 7*x  - 5 - \/ 3*x  - 2 = \/ 4*x  - 3
(3x+(7x5))2=4x3\left(- \sqrt{3 x} + \left(\sqrt{7 x} - 5\right)\right) - 2 = \sqrt{4 x} - 3
Detail solution
Given the equation
(3x+(7x5))2=4x3\left(- \sqrt{3 x} + \left(\sqrt{7 x} - 5\right)\right) - 2 = \sqrt{4 x} - 3
Transfer the right side of the equation left part with negative sign
x(23+7)=4\sqrt{x} \left(-2 - \sqrt{3} + \sqrt{7}\right) = 4
We raise the equation sides to 2-th degree
x(23+7)2=16x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16
x(23+7)2=16x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16
Transfer the right side of the equation left part with negative sign
x(23+7)216=0x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} - 16 = 0
Expand brackets in the left part
-16 + x-2+sqrt+7 - sqrt3)^2 = 0

Looking for similar summands in the left part:
-16 + x*(-2 + sqrt(7) - sqrt(3))^2 = 0

Move free summands (without x)
from left part to right part, we given:
x(23+7)2=16x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16
Divide both parts of the equation by (-2 + sqrt(7) - sqrt(3))^2
x = 16 / ((-2 + sqrt(7) - sqrt(3))^2)

We get the answer: x = 16/(2 + sqrt(3) - sqrt(7))^2

Because
x=423+7\sqrt{x} = \frac{4}{-2 - \sqrt{3} + \sqrt{7}}
and
x0\sqrt{x} \geq 0
then
423+70\frac{4}{-2 - \sqrt{3} + \sqrt{7}} \geq 0
The final answer:
This equation has no roots
The graph
0.01.02.03.04.05.06.07.08.09.010.0-1010
Sum and product of roots [src]
sum
0
00
=
0
00
product
1
11
=
1
11
1