Mister Exam

Other calculators

√7x-5-√3x-2=√4x-3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  _____         _____         _____    
\/ 7*x  - 5 - \/ 3*x  - 2 = \/ 4*x  - 3
$$\left(- \sqrt{3 x} + \left(\sqrt{7 x} - 5\right)\right) - 2 = \sqrt{4 x} - 3$$
Detail solution
Given the equation
$$\left(- \sqrt{3 x} + \left(\sqrt{7 x} - 5\right)\right) - 2 = \sqrt{4 x} - 3$$
Transfer the right side of the equation left part with negative sign
$$\sqrt{x} \left(-2 - \sqrt{3} + \sqrt{7}\right) = 4$$
We raise the equation sides to 2-th degree
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
Transfer the right side of the equation left part with negative sign
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} - 16 = 0$$
Expand brackets in the left part
-16 + x-2+sqrt+7 - sqrt3)^2 = 0

Looking for similar summands in the left part:
-16 + x*(-2 + sqrt(7) - sqrt(3))^2 = 0

Move free summands (without x)
from left part to right part, we given:
$$x \left(-2 - \sqrt{3} + \sqrt{7}\right)^{2} = 16$$
Divide both parts of the equation by (-2 + sqrt(7) - sqrt(3))^2
x = 16 / ((-2 + sqrt(7) - sqrt(3))^2)

We get the answer: x = 16/(2 + sqrt(3) - sqrt(7))^2

Because
$$\sqrt{x} = \frac{4}{-2 - \sqrt{3} + \sqrt{7}}$$
and
$$\sqrt{x} \geq 0$$
then
$$\frac{4}{-2 - \sqrt{3} + \sqrt{7}} \geq 0$$
The final answer:
This equation has no roots
The graph
Sum and product of roots [src]
sum
0
$$0$$
=
0
$$0$$
product
1
$$1$$
=
1
$$1$$
1