Mister Exam

Other calculators

6p²-p-2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2            
6*p  - p - 2 = 0
$$\left(6 p^{2} - p\right) - 2 = 0$$
Detail solution
This equation is of the form
a*p^2 + b*p + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$p_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$p_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 6$$
$$b = -1$$
$$c = -2$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (6) * (-2) = 49

Because D > 0, then the equation has two roots.
p1 = (-b + sqrt(D)) / (2*a)

p2 = (-b - sqrt(D)) / (2*a)

or
$$p_{1} = \frac{2}{3}$$
$$p_{2} = - \frac{1}{2}$$
Vieta's Theorem
rewrite the equation
$$\left(6 p^{2} - p\right) - 2 = 0$$
of
$$a p^{2} + b p + c = 0$$
as reduced quadratic equation
$$p^{2} + \frac{b p}{a} + \frac{c}{a} = 0$$
$$p^{2} - \frac{p}{6} - \frac{1}{3} = 0$$
$$2 p^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{1}{6}$$
$$q = \frac{c}{a}$$
$$q = - \frac{1}{3}$$
Vieta Formulas
$$p_{1} + p_{2} = - p$$
$$p_{1} p_{2} = q$$
$$p_{1} + p_{2} = \frac{1}{6}$$
$$p_{1} p_{2} = - \frac{1}{3}$$
The graph
Sum and product of roots [src]
sum
-1/2 + 2/3
$$- \frac{1}{2} + \frac{2}{3}$$
=
1/6
$$\frac{1}{6}$$
product
-2 
---
2*3
$$- \frac{1}{3}$$
=
-1/3
$$- \frac{1}{3}$$
-1/3
Rapid solution [src]
p1 = -1/2
$$p_{1} = - \frac{1}{2}$$
p2 = 2/3
$$p_{2} = \frac{2}{3}$$
p2 = 2/3
Numerical answer [src]
p1 = 0.666666666666667
p2 = -0.5
p2 = -0.5