5x-3y=6z equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
5*x-3*y = 6*z
Looking for similar summands in the left part:
-3*y + 5*x = 6*z
Move the summands with the other variables
from left part to right part, we given:
$$5 x = 3 y + 6 z$$
Divide both parts of the equation by 5
x = 3*y + 6*z / (5)
We get the answer: x = 3*y/5 + 6*z/5
3*re(y) 6*re(z) /3*im(y) 6*im(z)\
x1 = ------- + ------- + I*|------- + -------|
5 5 \ 5 5 /
$$x_{1} = i \left(\frac{3 \operatorname{im}{\left(y\right)}}{5} + \frac{6 \operatorname{im}{\left(z\right)}}{5}\right) + \frac{3 \operatorname{re}{\left(y\right)}}{5} + \frac{6 \operatorname{re}{\left(z\right)}}{5}$$
x1 = i*(3*im(y)/5 + 6*im(z)/5) + 3*re(y)/5 + 6*re(z)/5
Sum and product of roots
[src]
3*re(y) 6*re(z) /3*im(y) 6*im(z)\
------- + ------- + I*|------- + -------|
5 5 \ 5 5 /
$$i \left(\frac{3 \operatorname{im}{\left(y\right)}}{5} + \frac{6 \operatorname{im}{\left(z\right)}}{5}\right) + \frac{3 \operatorname{re}{\left(y\right)}}{5} + \frac{6 \operatorname{re}{\left(z\right)}}{5}$$
3*re(y) 6*re(z) /3*im(y) 6*im(z)\
------- + ------- + I*|------- + -------|
5 5 \ 5 5 /
$$i \left(\frac{3 \operatorname{im}{\left(y\right)}}{5} + \frac{6 \operatorname{im}{\left(z\right)}}{5}\right) + \frac{3 \operatorname{re}{\left(y\right)}}{5} + \frac{6 \operatorname{re}{\left(z\right)}}{5}$$
3*re(y) 6*re(z) /3*im(y) 6*im(z)\
------- + ------- + I*|------- + -------|
5 5 \ 5 5 /
$$i \left(\frac{3 \operatorname{im}{\left(y\right)}}{5} + \frac{6 \operatorname{im}{\left(z\right)}}{5}\right) + \frac{3 \operatorname{re}{\left(y\right)}}{5} + \frac{6 \operatorname{re}{\left(z\right)}}{5}$$
3*re(y) 6*re(z) 3*I*(2*im(z) + im(y))
------- + ------- + ---------------------
5 5 5
$$\frac{3 i \left(\operatorname{im}{\left(y\right)} + 2 \operatorname{im}{\left(z\right)}\right)}{5} + \frac{3 \operatorname{re}{\left(y\right)}}{5} + \frac{6 \operatorname{re}{\left(z\right)}}{5}$$
3*re(y)/5 + 6*re(z)/5 + 3*i*(2*im(z) + im(y))/5