Mister Exam

Other calculators

2/3*((1/2)*z-(6/5))-4*((11/10)*z-2)=3*(1/6*z-3)+2*z+10 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  /z   6\                                      
2*|- - -|                                      
  \2   5/     /11*z    \     /z    \           
--------- - 4*|---- - 2| = 3*|- - 3| + 2*z + 10
    3         \ 10     /     \6    /           
$$\frac{2 \left(\frac{z}{2} - \frac{6}{5}\right)}{3} - 4 \left(\frac{11 z}{10} - 2\right) = \left(2 z + 3 \left(\frac{z}{6} - 3\right)\right) + 10$$
Detail solution
Given the linear equation:
2/3*((1/2)*z-(6/5))-4*((11/10)*z-2) = 3*(1/6*z-3)+2*z+10

Expand brackets in the left part
2/3*1/2z-6/5)-4*11/10z-2) = 3*(1/6*z-3)+2*z+10

Expand brackets in the right part
2/3*1/2z-6/5)-4*11/10z-2) = 3*1/6*z-3*3+2*z+10

Looking for similar summands in the left part:
36/5 - 61*z/15 = 3*1/6*z-3*3+2*z+10

Looking for similar summands in the right part:
36/5 - 61*z/15 = 1 + 5*z/2

Move free summands (without z)
from left part to right part, we given:
$$- \frac{61 z}{15} = \frac{5 z}{2} - \frac{31}{5}$$
Move the summands with the unknown z
from the right part to the left part:
$$\frac{\left(-197\right) z}{30} = - \frac{31}{5}$$
Divide both parts of the equation by -197/30
z = -31/5 / (-197/30)

We get the answer: z = 186/197
The graph
Rapid solution [src]
     186
z1 = ---
     197
$$z_{1} = \frac{186}{197}$$
z1 = 186/197
Sum and product of roots [src]
sum
186
---
197
$$\frac{186}{197}$$
=
186
---
197
$$\frac{186}{197}$$
product
186
---
197
$$\frac{186}{197}$$
=
186
---
197
$$\frac{186}{197}$$
186/197
Numerical answer [src]
z1 = 0.944162436548223
z1 = 0.944162436548223