Mister Exam

Other calculators

3x^2+2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
3*x  + 2 = 0
$$3 x^{2} + 2 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 0$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (3) * (2) = -24

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{\sqrt{6} i}{3}$$
$$x_{2} = - \frac{\sqrt{6} i}{3}$$
Vieta's Theorem
rewrite the equation
$$3 x^{2} + 2 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{2}{3} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = \frac{2}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = \frac{2}{3}$$
The graph
Rapid solution [src]
          ___ 
     -I*\/ 6  
x1 = ---------
         3    
$$x_{1} = - \frac{\sqrt{6} i}{3}$$
         ___
     I*\/ 6 
x2 = -------
        3   
$$x_{2} = \frac{\sqrt{6} i}{3}$$
x2 = sqrt(6)*i/3
Sum and product of roots [src]
sum
      ___       ___
  I*\/ 6    I*\/ 6 
- ------- + -------
     3         3   
$$- \frac{\sqrt{6} i}{3} + \frac{\sqrt{6} i}{3}$$
=
0
$$0$$
product
     ___      ___
-I*\/ 6   I*\/ 6 
---------*-------
    3        3   
$$- \frac{\sqrt{6} i}{3} \frac{\sqrt{6} i}{3}$$
=
2/3
$$\frac{2}{3}$$
2/3
Numerical answer [src]
x1 = 0.816496580927726*i
x2 = -0.816496580927726*i
x2 = -0.816496580927726*i