Mister Exam

Other calculators

√(3x^2+5x-2)=3x-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   ________________          
  /    2                     
\/  3*x  + 5*x - 2  = 3*x - 1
$$\sqrt{\left(3 x^{2} + 5 x\right) - 2} = 3 x - 1$$
Detail solution
Given the equation
$$\sqrt{\left(3 x^{2} + 5 x\right) - 2} = 3 x - 1$$
$$\sqrt{3 x^{2} + 5 x - 2} = 3 x - 1$$
We raise the equation sides to 2-th degree
$$3 x^{2} + 5 x - 2 = \left(3 x - 1\right)^{2}$$
$$3 x^{2} + 5 x - 2 = 9 x^{2} - 6 x + 1$$
Transfer the right side of the equation left part with negative sign
$$- 6 x^{2} + 11 x - 3 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -6$$
$$b = 11$$
$$c = -3$$
, then
D = b^2 - 4 * a * c = 

(11)^2 - 4 * (-6) * (-3) = 49

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{3}$$
$$x_{2} = \frac{3}{2}$$

Because
$$\sqrt{3 x^{2} + 5 x - 2} = 3 x - 1$$
and
$$\sqrt{3 x^{2} + 5 x - 2} \geq 0$$
then
$$3 x - 1 \geq 0$$
or
$$\frac{1}{3} \leq x$$
$$x < \infty$$
The final answer:
$$x_{1} = \frac{1}{3}$$
$$x_{2} = \frac{3}{2}$$
The graph
Rapid solution [src]
x1 = 1/3
$$x_{1} = \frac{1}{3}$$
x2 = 3/2
$$x_{2} = \frac{3}{2}$$
x2 = 3/2
Sum and product of roots [src]
sum
1/3 + 3/2
$$\frac{1}{3} + \frac{3}{2}$$
=
11/6
$$\frac{11}{6}$$
product
 3 
---
3*2
$$\frac{3}{2 \cdot 3}$$
=
1/2
$$\frac{1}{2}$$
1/2
Numerical answer [src]
x1 = 0.333333333333333
x2 = 1.5
x2 = 1.5