Mister Exam

Other calculators

(2y)/(y-3)=(3y+3)/y equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2*y    3*y + 3
----- = -------
y - 3      y   
2yy3=3y+3y\frac{2 y}{y - 3} = \frac{3 y + 3}{y}
Detail solution
Given the equation:
2yy3=3y+3y\frac{2 y}{y - 3} = \frac{3 y + 3}{y}
Multiply the equation sides by the denominators:
-3 + y and y
we get:
2y(y3)y3=(y3)(3y+3)y\frac{2 y \left(y - 3\right)}{y - 3} = \frac{\left(y - 3\right) \left(3 y + 3\right)}{y}
2y=3y69y2 y = 3 y - 6 - \frac{9}{y}
y2y=y(3y69y)y 2 y = y \left(3 y - 6 - \frac{9}{y}\right)
2y2=3y26y92 y^{2} = 3 y^{2} - 6 y - 9
Move right part of the equation to
left part with negative sign.

The equation is transformed from
2y2=3y26y92 y^{2} = 3 y^{2} - 6 y - 9
to
y2+6y+9=0- y^{2} + 6 y + 9 = 0
This equation is of the form
a*y^2 + b*y + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
y1=Db2ay_{1} = \frac{\sqrt{D} - b}{2 a}
y2=Db2ay_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = -1
b=6b = 6
c=9c = 9
, then
D = b^2 - 4 * a * c = 

(6)^2 - 4 * (-1) * (9) = 72

Because D > 0, then the equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)

y2 = (-b - sqrt(D)) / (2*a)

or
y1=332y_{1} = 3 - 3 \sqrt{2}
y2=3+32y_{2} = 3 + 3 \sqrt{2}
The graph
-10.0-7.5-5.0-2.50.02.55.07.510.012.515.0-2500025000
Sum and product of roots [src]
sum
        ___           ___
3 - 3*\/ 2  + 3 + 3*\/ 2 
(332)+(3+32)\left(3 - 3 \sqrt{2}\right) + \left(3 + 3 \sqrt{2}\right)
=
6
66
product
/        ___\ /        ___\
\3 - 3*\/ 2 /*\3 + 3*\/ 2 /
(332)(3+32)\left(3 - 3 \sqrt{2}\right) \left(3 + 3 \sqrt{2}\right)
=
-9
9-9
-9
Rapid solution [src]
             ___
y1 = 3 - 3*\/ 2 
y1=332y_{1} = 3 - 3 \sqrt{2}
             ___
y2 = 3 + 3*\/ 2 
y2=3+32y_{2} = 3 + 3 \sqrt{2}
y2 = 3 + 3*sqrt(2)
Numerical answer [src]
y1 = -1.24264068711929
y2 = 7.24264068711928
y2 = 7.24264068711928