Given the equation:
$$\frac{2 y}{y - 3} = \frac{3 y + 3}{y}$$
Multiply the equation sides by the denominators:
-3 + y and y
we get:
$$\frac{2 y \left(y - 3\right)}{y - 3} = \frac{\left(y - 3\right) \left(3 y + 3\right)}{y}$$
$$2 y = 3 y - 6 - \frac{9}{y}$$
$$y 2 y = y \left(3 y - 6 - \frac{9}{y}\right)$$
$$2 y^{2} = 3 y^{2} - 6 y - 9$$
Move right part of the equation to
left part with negative sign.
The equation is transformed from
$$2 y^{2} = 3 y^{2} - 6 y - 9$$
to
$$- y^{2} + 6 y + 9 = 0$$
This equation is of the form
a*y^2 + b*y + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -1$$
$$b = 6$$
$$c = 9$$
, then
D = b^2 - 4 * a * c =
(6)^2 - 4 * (-1) * (9) = 72
Because D > 0, then the equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)
y2 = (-b - sqrt(D)) / (2*a)
or
$$y_{1} = 3 - 3 \sqrt{2}$$
$$y_{2} = 3 + 3 \sqrt{2}$$