22x-5y=-46 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
22*x-5*y = -46
Looking for similar summands in the left part:
-5*y + 22*x = -46
Move the summands with the other variables
from left part to right part, we given:
$$- 5 y = - 22 x - 46$$
Divide both parts of the equation by -5
y = -46 - 22*x / (-5)
We get the answer: y = 46/5 + 22*x/5
46 22*re(x) 22*I*im(x)
y1 = -- + -------- + ----------
5 5 5
$$y_{1} = \frac{22 \operatorname{re}{\left(x\right)}}{5} + \frac{22 i \operatorname{im}{\left(x\right)}}{5} + \frac{46}{5}$$
y1 = 22*re(x)/5 + 22*i*im(x)/5 + 46/5
Sum and product of roots
[src]
46 22*re(x) 22*I*im(x)
-- + -------- + ----------
5 5 5
$$\frac{22 \operatorname{re}{\left(x\right)}}{5} + \frac{22 i \operatorname{im}{\left(x\right)}}{5} + \frac{46}{5}$$
46 22*re(x) 22*I*im(x)
-- + -------- + ----------
5 5 5
$$\frac{22 \operatorname{re}{\left(x\right)}}{5} + \frac{22 i \operatorname{im}{\left(x\right)}}{5} + \frac{46}{5}$$
46 22*re(x) 22*I*im(x)
-- + -------- + ----------
5 5 5
$$\frac{22 \operatorname{re}{\left(x\right)}}{5} + \frac{22 i \operatorname{im}{\left(x\right)}}{5} + \frac{46}{5}$$
46 22*re(x) 22*I*im(x)
-- + -------- + ----------
5 5 5
$$\frac{22 \operatorname{re}{\left(x\right)}}{5} + \frac{22 i \operatorname{im}{\left(x\right)}}{5} + \frac{46}{5}$$
46/5 + 22*re(x)/5 + 22*i*im(x)/5