e^x=4 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$e^{x} = 4$$
or
$$e^{x} - 4 = 0$$
or
$$e^{x} = 4$$
or
$$e^{x} = 4$$
- this is the simplest exponential equation
Do replacement
$$v = e^{x}$$
we get
$$v - 4 = 0$$
or
$$v - 4 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 4$$
We get the answer: v = 4
do backward replacement
$$e^{x} = v$$
or
$$x = \log{\left(v \right)}$$
The final answer
$$x_{1} = \frac{\log{\left(4 \right)}}{\log{\left(e \right)}} = \log{\left(4 \right)}$$
$$x_{1} = \log{\left(4 \right)}$$
Sum and product of roots
[src]
$$\log{\left(4 \right)}$$
$$\log{\left(4 \right)}$$
$$\log{\left(4 \right)}$$
$$\log{\left(4 \right)}$$