Mister Exam

21x+14y=35 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
21*x + 14*y = 35
21x+14y=3521 x + 14 y = 35
Detail solution
Given the linear equation:
21*x+14*y = 35

Looking for similar summands in the left part:
14*y + 21*x = 35

Move the summands with the other variables
from left part to right part, we given:
14y=3521x14 y = 35 - 21 x
Divide both parts of the equation by 14
y = 35 - 21*x / (14)

We get the answer: y = 5/2 - 3*x/2
The graph
Rapid solution [src]
     5   3*re(x)   3*I*im(x)
y1 = - - ------- - ---------
     2      2          2    
y1=3re(x)23iim(x)2+52y_{1} = - \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}
y1 = -3*re(x)/2 - 3*i*im(x)/2 + 5/2
Sum and product of roots [src]
sum
5   3*re(x)   3*I*im(x)
- - ------- - ---------
2      2          2    
3re(x)23iim(x)2+52- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}
=
5   3*re(x)   3*I*im(x)
- - ------- - ---------
2      2          2    
3re(x)23iim(x)2+52- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}
product
5   3*re(x)   3*I*im(x)
- - ------- - ---------
2      2          2    
3re(x)23iim(x)2+52- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}
=
5   3*re(x)   3*I*im(x)
- - ------- - ---------
2      2          2    
3re(x)23iim(x)2+52- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}
5/2 - 3*re(x)/2 - 3*i*im(x)/2