21x+14y=35 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
21*x+14*y = 35
Looking for similar summands in the left part:
14*y + 21*x = 35
Move the summands with the other variables
from left part to right part, we given:
14y=35−21xDivide both parts of the equation by 14
y = 35 - 21*x / (14)
We get the answer: y = 5/2 - 3*x/2
5 3*re(x) 3*I*im(x)
y1 = - - ------- - ---------
2 2 2
y1=−23re(x)−23iim(x)+25
y1 = -3*re(x)/2 - 3*i*im(x)/2 + 5/2
Sum and product of roots
[src]
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
−23re(x)−23iim(x)+25
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
−23re(x)−23iim(x)+25
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
−23re(x)−23iim(x)+25
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
−23re(x)−23iim(x)+25
5/2 - 3*re(x)/2 - 3*i*im(x)/2