21x+14y=35 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
21*x+14*y = 35
Looking for similar summands in the left part:
14*y + 21*x = 35
Move the summands with the other variables
from left part to right part, we given:
$$14 y = 35 - 21 x$$
Divide both parts of the equation by 14
y = 35 - 21*x / (14)
We get the answer: y = 5/2 - 3*x/2
5 3*re(x) 3*I*im(x)
y1 = - - ------- - ---------
2 2 2
$$y_{1} = - \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}$$
y1 = -3*re(x)/2 - 3*i*im(x)/2 + 5/2
Sum and product of roots
[src]
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}$$
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}$$
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}$$
5 3*re(x) 3*I*im(x)
- - ------- - ---------
2 2 2
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + \frac{5}{2}$$
5/2 - 3*re(x)/2 - 3*i*im(x)/2