Mister Exam

Other calculators

log1/3(5^(1+log15(x)-1/(3^(1+log15(x)))))=-1+log15(x) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
             log(x)        1                     
        1 + ------- - ------------               
            log(15)         log(x)               
                       1 + -------               
                           log(15)               
log(1)                3                    log(x)
------*5                           = -1 + -------
  3                                       log(15)
$$5^{\left(\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1\right) - \frac{1}{3^{\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1}}} \frac{\log{\left(1 \right)}}{3} = \frac{\log{\left(x \right)}}{\log{\left(15 \right)}} - 1$$
Detail solution
Given the equation
$$5^{\left(\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1\right) - \frac{1}{3^{\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1}}} \frac{\log{\left(1 \right)}}{3} = \frac{\log{\left(x \right)}}{\log{\left(15 \right)}} - 1$$
Transfer the right side of the equation left part with negative sign
$$- \frac{\log{\left(x \right)}}{\log{\left(15 \right)}} = -1$$
Let's divide both parts of the equation by the multiplier of log =-1/log(15)
$$\log{\left(x \right)} = \log{\left(15 \right)}$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$x = e^{- \frac{1}{\left(-1\right) \frac{1}{\log{\left(15 \right)}}}}$$
simplify
$$x = 15$$
The graph
Rapid solution [src]
x1 = 15
$$x_{1} = 15$$
x1 = 15
Sum and product of roots [src]
sum
15
$$15$$
=
15
$$15$$
product
15
$$15$$
=
15
$$15$$
15
Numerical answer [src]
x1 = 15.0
x1 = 15.0