log1/3(5^(1+log15(x)-1/(3^(1+log15(x)))))=-1+log15(x) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$5^{\left(\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1\right) - \frac{1}{3^{\frac{\log{\left(x \right)}}{\log{\left(15 \right)}} + 1}}} \frac{\log{\left(1 \right)}}{3} = \frac{\log{\left(x \right)}}{\log{\left(15 \right)}} - 1$$
Transfer the right side of the equation left part with negative sign
$$- \frac{\log{\left(x \right)}}{\log{\left(15 \right)}} = -1$$
Let's divide both parts of the equation by the multiplier of log =-1/log(15)
$$\log{\left(x \right)} = \log{\left(15 \right)}$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$x = e^{- \frac{1}{\left(-1\right) \frac{1}{\log{\left(15 \right)}}}}$$
simplify
$$x = 15$$
Sum and product of roots
[src]
$$15$$
$$15$$
$$15$$
$$15$$