Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
$$z^{2} \cos{\left(z \right)} + 2 z \sin{\left(z \right)}$$
The second derivative
[src]
2
2*sin(z) - z *sin(z) + 4*z*cos(z)
$$- z^{2} \sin{\left(z \right)} + 4 z \cos{\left(z \right)} + 2 \sin{\left(z \right)}$$
The third derivative
[src]
2
6*cos(z) - z *cos(z) - 6*z*sin(z)
$$- z^{2} \cos{\left(z \right)} - 6 z \sin{\left(z \right)} + 6 \cos{\left(z \right)}$$