Mister Exam

Other calculators


z^2*sinz

Derivative of z^2*sinz

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2       
z *sin(z)
$$z^{2} \sin{\left(z \right)}$$
z^2*sin(z)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 2                    
z *cos(z) + 2*z*sin(z)
$$z^{2} \cos{\left(z \right)} + 2 z \sin{\left(z \right)}$$
The second derivative [src]
            2                    
2*sin(z) - z *sin(z) + 4*z*cos(z)
$$- z^{2} \sin{\left(z \right)} + 4 z \cos{\left(z \right)} + 2 \sin{\left(z \right)}$$
The third derivative [src]
            2                    
6*cos(z) - z *cos(z) - 6*z*sin(z)
$$- z^{2} \cos{\left(z \right)} - 6 z \sin{\left(z \right)} + 6 \cos{\left(z \right)}$$
The graph
Derivative of z^2*sinz