2
z*E *I*z
----------
2
(z + 2*I)
(((z*E^2)*i)*z)/(z + 2*i)^2
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 2 2 2
z*E *I + I*z*e I*z *(-4*I - 2*z)*e
--------------- + --------------------
2 4
(z + 2*I) (z + 2*I)
/ 2 \
| 4*z 3*z | 2
2*I*|1 - ------- + ----------|*e
| z + 2*I 2|
\ (z + 2*I) /
---------------------------------
2
(z + 2*I)
/ 2 \
| 2*z 3*z | 2
12*I*|-1 - ---------- + -------|*e
| 2 z + 2*I|
\ (z + 2*I) /
-----------------------------------
3
(z + 2*I)