Mister Exam

Other calculators


(z*e^2iz)\((z+2i)^2)

Derivative of (z*e^2iz)\((z+2i)^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2     
 z*E *I*z 
----------
         2
(z + 2*I) 
$$\frac{z i e^{2} z}{\left(z + 2 i\right)^{2}}$$
(((z*E^2)*i)*z)/(z + 2*i)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2          2      2               2
z*E *I + I*z*e    I*z *(-4*I - 2*z)*e 
--------------- + --------------------
            2                   4     
   (z + 2*I)           (z + 2*I)      
$$\frac{i z^{2} \left(- 2 z - 4 i\right) e^{2}}{\left(z + 2 i\right)^{4}} + \frac{i z e^{2} + i e^{2} z}{\left(z + 2 i\right)^{2}}$$
The second derivative [src]
    /                    2   \   
    |      4*z        3*z    |  2
2*I*|1 - ------- + ----------|*e 
    |    z + 2*I            2|   
    \              (z + 2*I) /   
---------------------------------
                     2           
            (z + 2*I)            
$$\frac{2 i \left(\frac{3 z^{2}}{\left(z + 2 i\right)^{2}} - \frac{4 z}{z + 2 i} + 1\right) e^{2}}{\left(z + 2 i\right)^{2}}$$
The third derivative [src]
     /           2             \   
     |        2*z         3*z  |  2
12*I*|-1 - ---------- + -------|*e 
     |              2   z + 2*I|   
     \     (z + 2*I)           /   
-----------------------------------
                      3            
             (z + 2*I)             
$$\frac{12 i \left(- \frac{2 z^{2}}{\left(z + 2 i\right)^{2}} + \frac{3 z}{z + 2 i} - 1\right) e^{2}}{\left(z + 2 i\right)^{3}}$$
The graph
Derivative of (z*e^2iz)\((z+2i)^2)