Mister Exam

Other calculators


z=x^2sin(5x-3)

Derivative of z=x^2sin(5x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2             
x *sin(5*x - 3)
x2sin(5x3)x^{2} \sin{\left(5 x - 3 \right)}
x^2*sin(5*x - 3)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=sin(5x3)g{\left(x \right)} = \sin{\left(5 x - 3 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5x3u = 5 x - 3.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(5x3)\frac{d}{d x} \left(5 x - 3\right):

      1. Differentiate 5x35 x - 3 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        2. The derivative of the constant 3-3 is zero.

        The result is: 55

      The result of the chain rule is:

      5cos(5x3)5 \cos{\left(5 x - 3 \right)}

    The result is: 5x2cos(5x3)+2xsin(5x3)5 x^{2} \cos{\left(5 x - 3 \right)} + 2 x \sin{\left(5 x - 3 \right)}

  2. Now simplify:

    x(5xcos(5x3)+2sin(5x3))x \left(5 x \cos{\left(5 x - 3 \right)} + 2 \sin{\left(5 x - 3 \right)}\right)


The answer is:

x(5xcos(5x3)+2sin(5x3))x \left(5 x \cos{\left(5 x - 3 \right)} + 2 \sin{\left(5 x - 3 \right)}\right)

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
                      2             
2*x*sin(5*x - 3) + 5*x *cos(5*x - 3)
5x2cos(5x3)+2xsin(5x3)5 x^{2} \cos{\left(5 x - 3 \right)} + 2 x \sin{\left(5 x - 3 \right)}
The second derivative [src]
                      2                                   
2*sin(-3 + 5*x) - 25*x *sin(-3 + 5*x) + 20*x*cos(-3 + 5*x)
25x2sin(5x3)+20xcos(5x3)+2sin(5x3)- 25 x^{2} \sin{\left(5 x - 3 \right)} + 20 x \cos{\left(5 x - 3 \right)} + 2 \sin{\left(5 x - 3 \right)}
The third derivative [src]
  /                                           2              \
5*\6*cos(-3 + 5*x) - 30*x*sin(-3 + 5*x) - 25*x *cos(-3 + 5*x)/
5(25x2cos(5x3)30xsin(5x3)+6cos(5x3))5 \left(- 25 x^{2} \cos{\left(5 x - 3 \right)} - 30 x \sin{\left(5 x - 3 \right)} + 6 \cos{\left(5 x - 3 \right)}\right)
The graph
Derivative of z=x^2sin(5x-3)